Phase Changes in Subtree Varieties in Random Recursive and Binary Search Trees
نویسندگان
چکیده
Abstract. We study the variety of subtrees lying on the fringe of recursive trees and binary search trees by analyzing the distributional behavior of Xn,k, which counts the number of subtrees of size k in a random tree of size n, with k = k(n) dependent on n. Using analytic methods we can characterize for both tree families the phase change behavior of Xn,k as follows. In the subcritical case, when k(n)/ √ n → 0, we show that Xn,k is (after normalization) asymptotically normally distributed, whereas in the supercritical case, when k(n)/ √ n → ∞, Xn,k converges to 0. In the critical case, when k(n) = Θ( √ n ), we show that if k/ √ n approaches a limit then Xn,k converges in distribution to a Poisson random variable, whereas if k/ √ n does not approach a finite nonzero limit, the size oscillates and does not converge in distribution to any random variable. This provides for recursive trees and binary search trees an understanding of the complete spectrum of phases of Xn,k and the gradual change from the subcritical to the supercritical phase.
منابع مشابه
P´olya Urn Models and Connections to Random Trees: A Review
This paper reviews P´olya urn models and their connection to random trees. Basic results are presented, together with proofs that underly the historical evolution of the accompanying thought process. Extensions and generalizations are given according to chronology: • P´olya-Eggenberger’s urn • Bernard Friedman’s urn • Generalized P´olya urns • Extended urn schemes • Invertible urn schemes ...
متن کاملThe Subtree Size Profile of Bucket Recursive Trees
Kazemi (2014) introduced a new version of bucket recursive trees as another generalization of recursive trees where buckets have variable capacities. In this paper, we get the $p$-th factorial moments of the random variable $S_{n,1}$ which counts the number of subtrees size-1 profile (leaves) and show a phase change of this random variable. These can be obtained by solving a first order partial...
متن کاملSubtree Sizes in Recursive Trees and Binary Search Trees: Berry-Esseen Bounds and Poisson Approximations
We study the number of subtrees on the fringe of random recursive trees and random binary search trees whose limit law is known to be either normal or Poisson or degenerate depending on the size of the subtree. We introduce a new approach to this problem which helps us to further clarify this phenomenon. More precisely, we derive optimal Berry-Esseen bounds and local limit theorems for the norm...
متن کاملLimit laws for functions of fringe trees for binary search trees and random recursive trees
We prove general limit theorems for sums of functions of subtrees of (random) binary search trees and random recursive trees. The proofs use a new version of a representation by Devroye, and Stein’s method for both normal and Poisson approximation together with certain couplings. As a consequence, we give simple new proofs of the fact that the number of fringe trees of size k = kn in the binary...
متن کاملProfile and Height of Random Binary Search Trees
The purpose of this article is to survey recent results on distributional properties of random binary search trees. In particular we consider the profile and the height.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Discrete Math.
دوره 22 شماره
صفحات -
تاریخ انتشار 2008